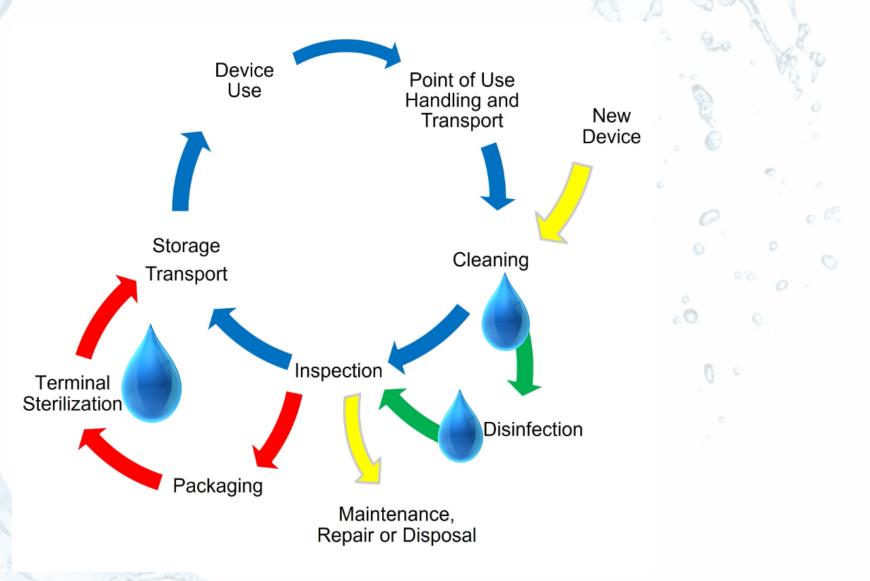
Introduction to ST108: Water Quality for Processing Medical Devices

Terra Kremer

AAMI WG95 Water for Reprocessing Co-chair

Disclaimer

 The presentation is intended for educational purposes only and does not replace independent professional judgment. Statements of fact and opinions expressed are those of the participant individually and, unless expressly stated to the contrary, are not the opinion or position of Johnson & Johnson or its affiliates.

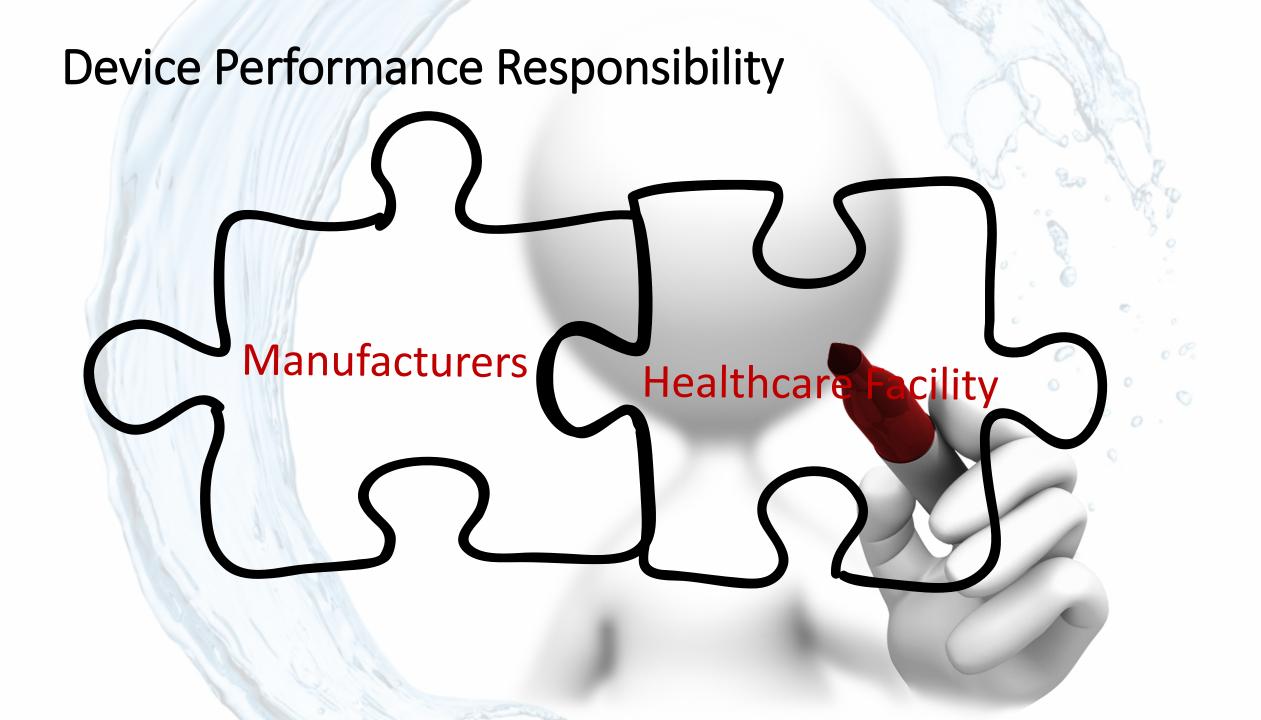


Objectives

- Overview of water quality & reason for ST108
- Roles & Responsibilities of Multidisciplinary Team
- Risk Analysis
- Categories of water and why
- Water quality selection
- How to get the water you need (Water treatment systems)
- Maintaining water treatment systems
- How to use the annexes of AAMI ST108

Water for Device Processing

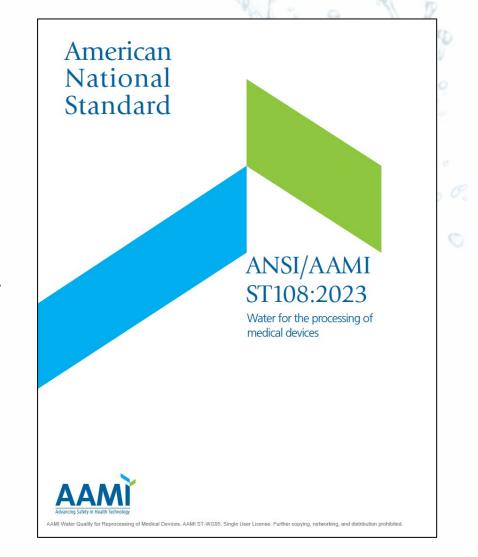
- Required for device processing
- Water quality can impact processing outcome
 - Cleaning agent performance
 - Detergent residuals

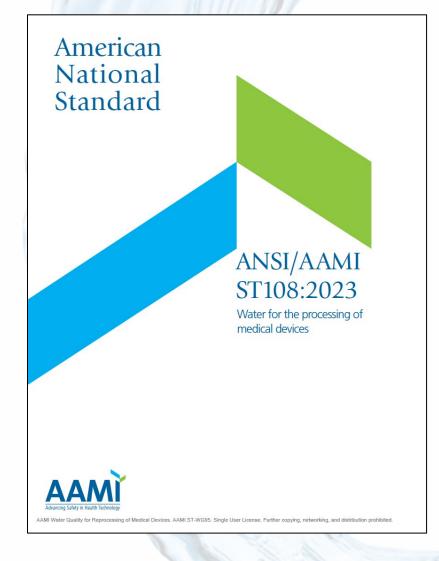


Poor Water Quality

INEFFECTIVE cleaning / disinfection because of chemical integration with water contaminants Steam PURITY with water contaminants Device MALFUNCTION during a patient procedure TOXIC effects and tissue irritation resulting from residuals

Patient INFECTION resulting from the use of contaminated devices




ANSI/AAMI ST108 – Communication Bridge

The What

- Roles & Responsibilities
- Risk Analysis
- Categories of Water Quality
- Water Quality Requirements
- Water System Installation / Operational / Performance Qualification
- Routine Monitoring
- Continuous Improvement
- Water System Maintenance

ANSI/AAMI ST108 – Communication Bridge

The How

- Application of Normative Requirements
- Risk Analysis
- Automated Endoscope Reprocessor
- Water in Cleaning and Heat Processes
- Water Treatment Technologies
- Water Treatment System Design
- Routine Monitoring
- Typical Water Quality Issues

AAMI TIR34 compared to ANSI/AAMI ST108

The What

- Roles & Responsibilities
- Risk Analysis
- Categories of Water Quality
- Water Quality Requirements
- Water System Installation / Operational / Performance Qualification
- Routine Monitoring
- Continuous Improvement
- Water System Maintenance

Multidisciplinary Team...the needed expertise Local building code and infrastructure

Infection prevention principles

Operations unique to the facility, organization, health system

- Sterile processing functions and equipment
 - Decontamination
 - Sterilizers
- End-users of surgical instruments/medical devices
- Capital planning
- Risk management
- Quality

Water treatment

Executive authority

Water Management Program

ASHRAE 188:2018 – Legionellosis: Risk Management for Building Water Systems

Integrate water management into existing programs

Multidisciplinary Team...Who to include?

Senior organizational leaders (Executive sponsorship)	Facilities engineering	Infection preventionist	Sterile processing technicians and leaders
Clinical engineering	Perioperative team members	Endoscopy team members	Water treatment specialist
Laboratory personnel	Risk managers	Quality improvement specialists	Change management specialists

Table 1—Multidisciplinary team responsibilities

Primary responsibility	Action
Facilities engineering personnel, multidisciplinary water management consultant or other external contracted personnel	General assessment of water quality. Per manufacturer guidelines routinely sample water and determine if values are within specified ranges per management plan
Facilities engineering personnel in conjunction with medical device processing personnel, multidisciplinary team, water management consultant or other external contracted personnel	Implementation of water treatment processes; determine appropriate method/equipment required for the facility's water supply
Medical device processing personnel in conjunction with clinical engineering personnel, external contracted personnel, or consultant	Assurance of proper water quality for the various stages in medical device processing using water quality monitoring
All members of the multidisciplinary team	Manages the water management program

Risk Analysis

ADVERSE EFFECT TO THE MEDICAL DEVICE ADVERSE EFFECTS TO THE PROCESS

ADVERSE EFFECTS TO THE PATIENT ADVERSE EFFECT TO PERSONNEL

Water Categories

Utility Water – cleaning and rinsing

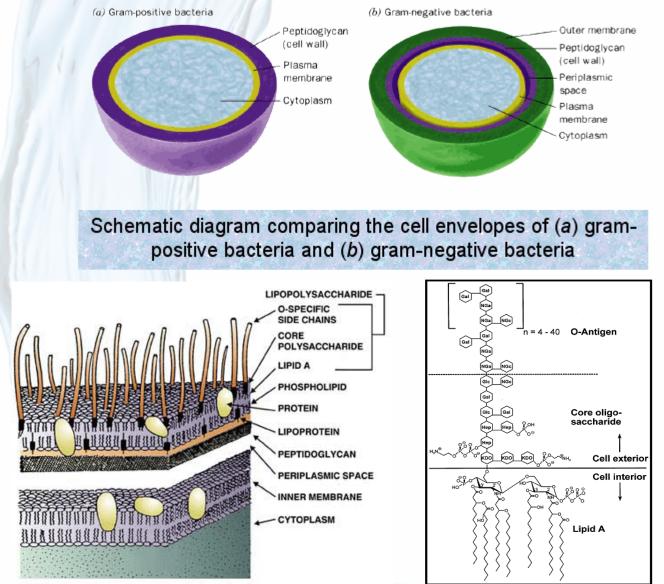
Critical Water – final steps of processing

Steam - sterilization

Water Quality Requirements

- Rationales for each value are included in section 6.3
- Updated quality requirements from TIR34
 - Alkalinity
 - TOC
 - Ionic Contaminates

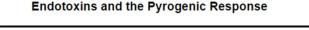
Water Quality Measurement	Units	Utility Water	Critical Water	Steam*
pH @ 25 °C:	pH	6.5 – 9.5	5.0 - 7.5	5.0 - 9.2**
Total Alkalinity	mg CaCO₃/L	<400	<8	<8
Bacteria	CFU/mL	<500***	<10	N/A
Endotoxin	EU/mL	N/A***	<10	N/A
Total Organic Carbon (TOC)	mg/L (ppm)	N/A	<1.0	N/A
Color and Turbidity	Visual	Colorless, clear, without sediment	Colorless, clear, without sediment	Colorless, clear, without sediment
Ionic Contaminants				
Aluminum	mg/L	<0.1	<0.1	<0.1
Chloride	mg/L	<250	<1	<1
Conductivity	µS/cm	<500	<10	<10
Copper	mg/L	<0.1	<0.1	<0.1
Iron	mg/L	<0.1	<0.1	<0.1
Manganese	mg/L	<0.1	<0.1	<0.1
Nitrate	mg/L	<10	<1	<1
Phosphate	mg/L	<5	<1	<1
Sulfate	mg/L	<150	<1	<1
Silicate	mg/L	<50	<1	<1
Total Hardness	mg CaCO ₃ /L	<150****	<1	<1
Zinc	mg/L	<0.1	<0.1	<0.1

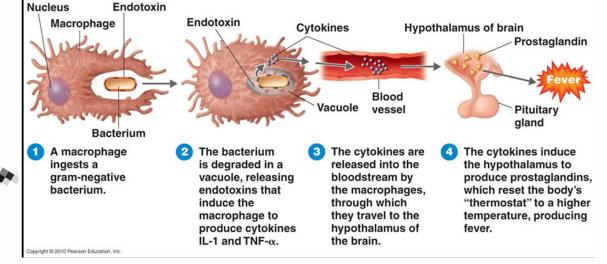

Tap Water Quality DIFFERENT BASED ON GEOGRAPHICAL REGION

Common Tap Water Components:

- Inorganic & Organic components
 - Bacterial Endotoxins
 - Organic Pollutants (e.g., microorganisms, plants, animals, pesticides)
- Dissolved Salts (Hard Water)
- Ionic Molecules (Chlorine, Iron, Copper, etc..) - Usually chlorinated to prevent microbial replication

What is Bacterial Endotoxin

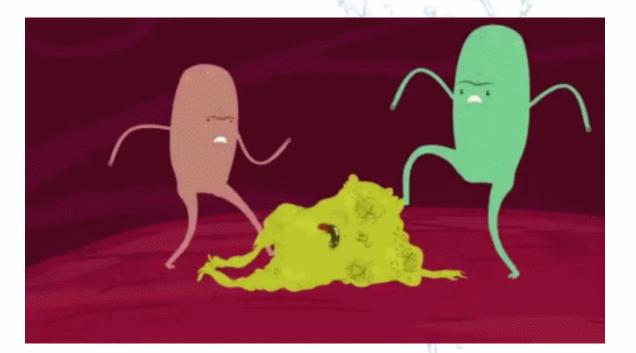



A high-molecular-weight complex that contains lipopolysaccharide (LPS), protein, and phospholipid originating from the outer membrane of Gramnegative bacteria.

Why is Bacterial Endotoxin a Concern?

Endotoxin Risk

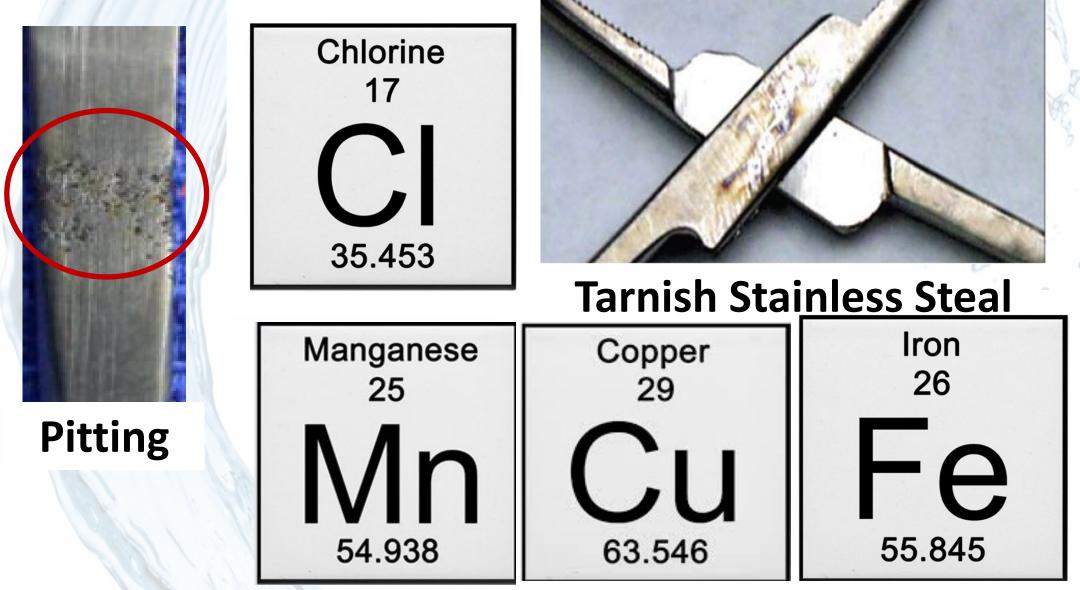
- The outer cell wall (LPS) is released into the environment when Gram-negative bacteria divide or lyse.
- Endotoxin can cause fever, meningitis, and a rapid fall in blood pressure if introduced into blood or tissues of the body
- Sterile Devices must have endotoxin levels within specified limits. - FDA Guidance 2016



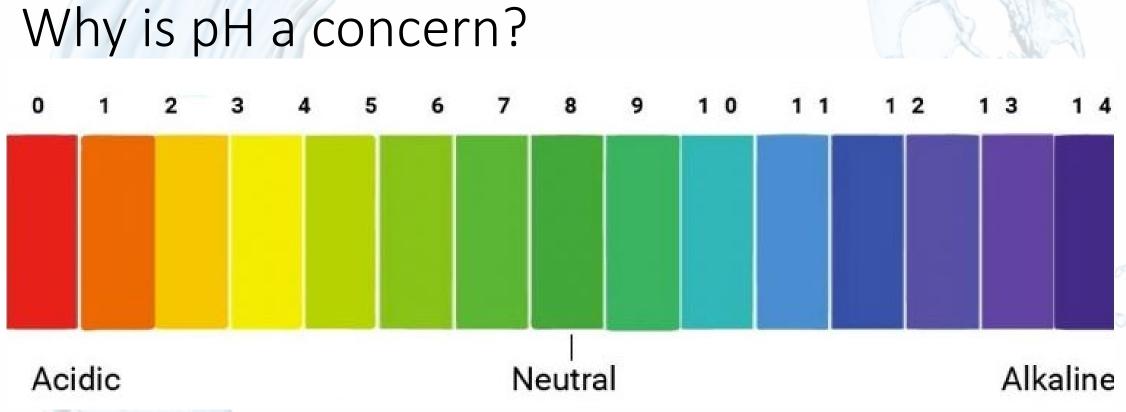
Organic Pollutants

Why is Total Organic Carbon (TOC) a Concern?

- Water residuals can discolor device
- Can interfere with the effectiveness of detergents, disinfectants or sterilants
- Provide nutrition to microorganisms and contribute to microbial growth


Why are Dissolved Salts a Concern?

- Decreases the effectiveness of most detergents / disinfectants
- Decreases the performance of washer / disinfectors



AAMI TIR34: 2014/(R)2017 Water for the Reprocessing of Medical Devices

Why are Ionic Molecules a Concern?

AAMI TIR34: 2014/(R)2017 Water for the Reprocessing of Medical Devices

- Detergent Effectiveness
- Device Pitting or Corrosion

What is Point of Use?

point-of-use treatment (of clinically used medical devices)

point-of-use treatment refers collectively to the activities that the user of a medical device performs at the point of use (e.g., where the procedure was performed) to prepare it for processing; point-of-use treatment occurs immediately after patient use and can include rinsing, flushing, wiping (to prevent biofilm formation and drying of soil), disconnecting accessories, preparing handoff communication, and preparing the instrument/device for transport to the decontamination facility and placing it in an appropriately labeled container

3.59

point-of-water use

POU

closest point in the distribution loop where the water is exposed to a medical device during processing

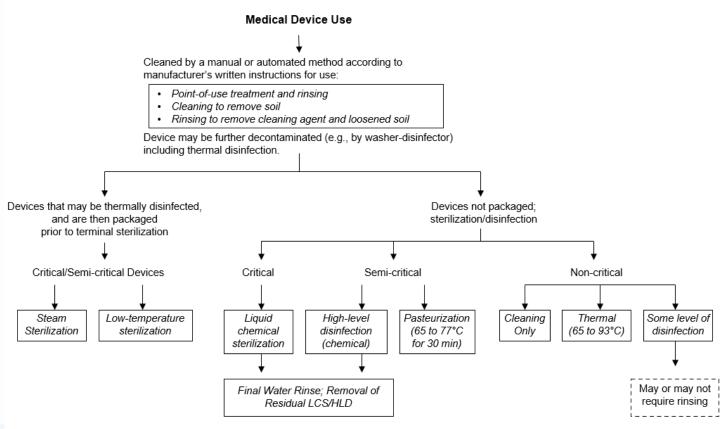
3.60

point-of-water use system

POU system

water treatment system in which purification (usually filtration) takes place just before a single water supply outlet

Note to entry: Examples of a POU system are a filter in the line leading to the faucet (such as a filter under a kitchen sink) and a filter attached to the faucet (such as a screw-on tap filter).


Water Quality Selection

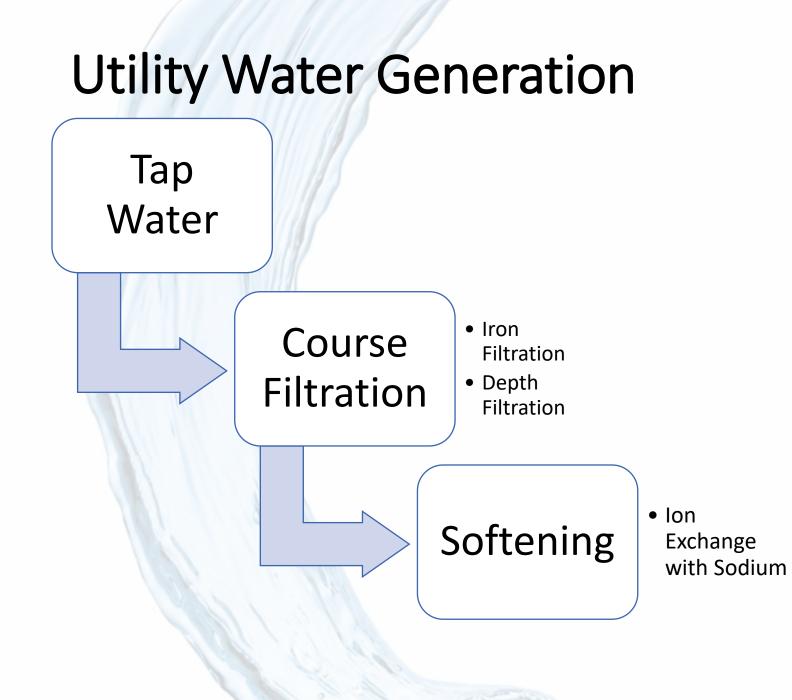
 Specify in Instruction for Use (IFU) Processing / Reprocessing

 Water Quality

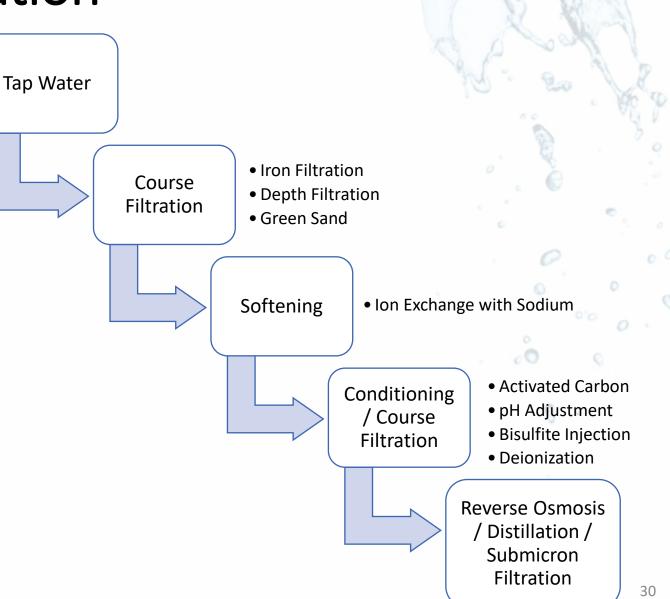
 Figure 1—Stages of medical device processing in which water quality is a consideration

 Utility Water

27


- Critical Water


Water Treatment Systems


. .

Critical Water Generation

Processing Steps Are Water Quality Dependent

Partner to Ensure Water Quality

Case Study: Legionella bacteria

https://www.beckershospitalreview.com/quality/ohio-hospital-confirms-hotwater-system-source-of-legionnaires-disease-outbreak.html

Maintaining Water Quality

Monitoring Requirements

Table 4—Water quality monitoring requirements

Water Quality Measurement	Units	Utility Water	Critical Water	Steam*
pH @ 25 °C: 🗸	pH	I – Measure	e of Hydroc	en lons
Conductivity	< <u>Ionic Co</u>	<u>mpounds –</u>	<u>Measured</u>	by Conductivity
Total Alkalinity		Alkalinity –	Dissolved 3	Solids
Total Hardness		Water - Co		
Bacteria	Bacteri	a – Measur	ed by a Bio	oburden Test
Endotoxin		Endotoxin –		
Color and Turbidity	Visual	Colorless, clear, without sediment	Colorless, clear, without sediment	Colorless, clear, without sediment

Monitoring Frequency

- Intent to make it easy to sample
- Multiple tests using same sample

			Minimum frequ	ency of testing*
Water quality measurement	Type of testing	Routine monitoring sampling site	Utility Water	Critical Water
рН	pH meter** or Colorimetric dipsticks (sample tested within 15 minutes)	After the last treatment step	Quarterly	Monthly
Conductivity	Conductivity meter (in line or by measurement of a collected sample)	After the last treatment step, Storage tanks (if used)	Quarterly	Daily
Total Alkalinity	Colorimetric dipsticks Alkalinity test kit**	After the last treatment step, storage tanks (if used)	Quarterly	Monthly
Total Hardness	Determination of ppm as CaCO ₃ by Colorimetric dipsticks, Titration kit**, or Handheld meter**	After the last treatment step	Quarterly	Monthly
Bacteria	Heterotrophic plate count (see Annex H)	Loop out and loop return points	N/A	Monthly
Endotoxin	LAL test (see Annex H)	Loop out and loop return points	N/A	Monthly

			Minimur	n frequency o	f testing*
Water quality measurement	Type of testing	Routine monitoring sampling site	Utility Water	Critical Water	Steam
рН	pH meter** or Colorimetric dipsticks (sample tested within 15 minutes)	At the point the distribution loop enters the processing area or first POU on the distribution loop	Quarterly	Monthly	Quarterly
Conductivity	Conductivity meter** or Colorimetric dipsticks	At the point the distribution loop enters the processing area or first POU on the distribution loop	Quarterly	Monthly	Quarterly
Total Alkalinity	Colorimetric dipsticks or Alkalinity test kit**	At the point the distribution loop enters the processing area or first POU on the distribution loop	Quarterly	Monthly	Quarterly
Total hardness	Determination of ppm as CaCO3 by Colorimetric dipsticks, Titration kit** ,or Handheld meter**	At the point the distribution loop enters the processing area or first POU on the distribution loop	Quarterly	Monthly	Quarterly
Bacteria	Heterotrophic plate count (see Annex H)	Each location of point-of- use in department	Quarterly	Monthly	N/A
Endotoxin	LAL test (see Annex H)	Each location of point-of- use in department	N/A	Monthly	N/A
Visual Inspection	Visual Inspection of inside of equipment - Look for residue, staining, scaling, and discoloration (Annex I)	Spray Arms/Inside Chamber Walls/Inside Interior of Machine	Daily	Daily	Daily

Table 6—Frequency for water quality monitoring at point-of-water-use

Tools for Success – How to use the Annexes

Annex A (informative)	Guidance on the application of the normative requirements	.40
Annex B (informative) F	Risk analysis	47
Annex C (informative) A	Automated Endoscope Reprocessor (AER)	<mark>50</mark>
Annex D (informative) V	Water used in cleaning and moist heat processes	52
Annex E (informative) V	Nater treatment technologies	56
Annex F (informative) V	Vater treatment system design	63
Annex G (informative) F	Routine monitoring of water treatment equipment & produced water quality	69
Annex H (informative)	Maintaining microbiological quality	75
Annex I (informative) Ty	pical presentation of water quality issues during the processing of medical devices	80

Annex A- Guidance on the application of the normative requirements

- More information around water quality levels
- Water characteristics
- Water quality selection

Terminology	Description/Definition	Typical Use Examples
Potable Water	Water that has been treated and delivered in a manner as to meet EPA guidelines intended for direct or indirect human consumption (see 3.56).	Water used for drinking fountain or hand washing station.
Utility Water	Water that may come from the tap but may need some form of treatment to achieve these specifications (criteria defined in Table 2) (see 3.86).	Water used for flushing, washing, and rinsing as part of the processing of medical devices.
Critical Water	Water that is usually extensively treated (Criteria defined in Table 2) (see 3.20).	Water used for final rinse prior to sterilization of a critical device, or after high-level disinfection, as part of the processing of medical devices.
Non-potable Water	Water that does not meet the EPA drinking guidelines.	Reclaimed water used for facility utilities.
Feedwater	Water as it is being fed to water treatment equipment or steam generator (see 3.33).	Water sourced to equipment (e.g., boiler) and is representative of the

Table A.1—Water descriptions

Annex B - Risk Analysis

• Guidance for performing a risk analysis for the selection of water quality.

Water Quality	Secondary Factor	Point-of-use Rinse	Cleaning Agent Soak and Manual Cleaning	Final Rinse					
Utility	Water Purity								
Water	Low Conductivity	Helps to loosen soil	Allows use of less cleaning agent*	Improved rinsing					
	High Conductivity	Soil is more difficult to remove	Requires more cleaning agent*	Hinders rinsing performance					
	Conductivity	May leave deposits							
	High TOC	Soil is more difficult to remove	Requires more cleaning agent*	May leave film on instruments					
	High chloride	May corrode metal (e.g., i	nstruments, pans, carts)						
	High metal ion content	May cause metal deposits on instrument	ges, corrosion)						
Critical	Water purity								
Water	In specification	Helps to loosen soil, adds cost for water production	Allows use of less cleaning agent, adds cost for water production*	Optimal rinsing, decreased potential for instrument spotting, staining, and corrosion					
	Out of specification	See Utility Water	Cleaning performance diminished*	See Utility Water					

Annex C – Automated Endoscope Reprocessor

Table C.1—Water quality for LCSPS

<u> </u>		1		1			KB ()	Sould 1
Stage in Process		Fun	Water Quality			en Co		
1.	Point-of-use treatment	Reduce the level of soil to transport for subsequent ensure that clinical soil is device or inside lumens	Utility Water is acceptable, at a temperature not exceeding 45 °C (113 °F).					
2.	Cleaning with cleaning agent solution	· · ·		Utility Water is acceptable to dilute cleaning agent, unless otherwise directed by the cleaning agent manufacturer's written IFU.			1	
	3.	Post-wash rinse	Remove cleaning agent re clinical soil	esidues and any loosened	incomi unless AER n IFU. W	Water is acceptable as ing water to an AER, s otherwise indicated by nanufacturer's written Vater changes and le rinses may be ted.		000.0
	4.	 Dilution of liquid chemical sterilant (if applicable) and liquid chemical exposure Sterilization 		Water quality for sterilant dilution is defined by the AER manufacturer written IFU for dedicated chemistries and by			written IFU if a non-dedicated chemistry.	
				5. Final rinse after liquid Re		erilant manufacturer's nove residual LCS and red ogens on device	uce likelihood of	In the case of HLD and LCS processed devices that will not be used immediately, sterile water or water that meets sterile water criteria should be used for the final rinse so as not to contaminate the device.

Annex D – Water used in cleaning and moist heat processes

Cleaning

Sterilization

Annex E – Water Treatment Technologies

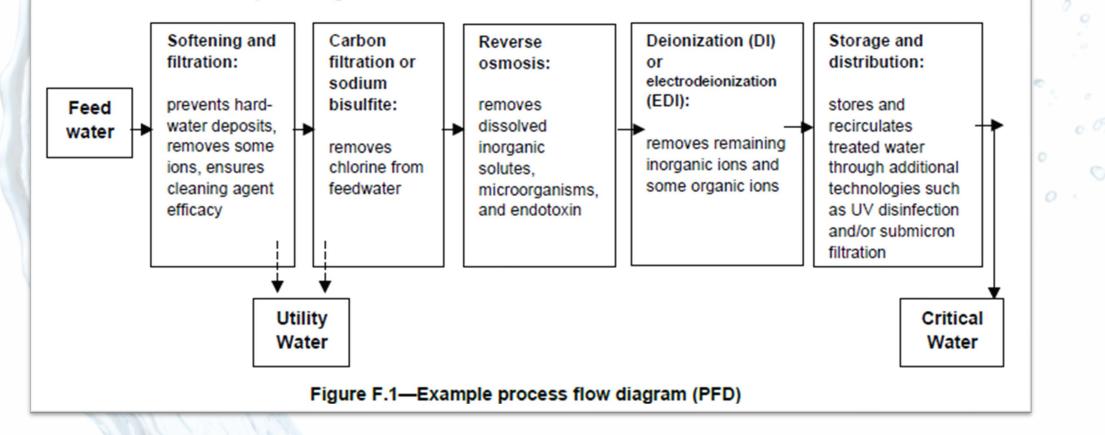
Table E.1—Summary of water treatment methods							Reverse osmosis (RO)	colloidal silica Bacteria Endotoxin Colloids Organics			removal pH adjustment to 8-8.5 to reduce carbon dioxide to bicarbonate Coarse and submicron filters		needed Capital cost Maintenance Resistivity not as high as DI			
W	ater treatment system component options Green sand	What in <u>Removes</u> Iron and manganese by oxidation	t does <u>Adds</u> n/a		n in water nt system <u>Place after</u> Tap water sources	Advantages Prevents iron and manganese from precipitating on	nsiderations <u>Disadvantages</u>	Purification	Deionization (DI) ^{3.4}	Anions, cations Retards silicon Strong base deionizer can remove silica	Some bacteria and bead fines	Final purification process or ultrafilter	Chlorine removal Coarse filter	Rate of production Efficiency of ion removal High resistivity	Potential for silicon breakthrough Potential to magnify fluoride if resin becomes overloaded Microbial growth Endotoxin generation due to bacterial growth	A
	depth filter Water softener	and filters out the precipitates: Magnesium Calcium Barium Strontium	Sodium	Coarse filter Carbon or bisulfite	Tap water sources	softener and DI resins and inactivating them Prevents hard water scaling and deposits from forming on the equipment and reprocessed device	Need for monitoring and replacement Sheds particles	0 e 1 4	Cation exchange resin	Cations Anions, cations	Some bacteria and bead fines Some bacteria and	Final purification processes or ultrafilter Final purification	Chlorine removal Chlorine removal	Rate of production Efficiency of ion removal Rate of production Efficiency of ion	Need to exchange or regenerate resins	
Pretreatment	Submicron filter ¹	Particles >0.2, 0.2, or 0.5µm	n/a		DI Any water treatment component that can generate bacteria		May shed particles		Anion exchange resin	Calibris Retards silicon Strong base deionizer can remove silica Anions.	bead fines	process or ultrafilter	Softener	removal High resistivity	trimethylamines	
	pH adjustment	Aids removal of dissolved carbon dioxide by converting carbon dioxide to carbonate that RO can exclude Aids removal of colloids	Acid or base (usually NaOH)	RO	Softener				Distillation ater treatment system component options	Endotoxin Organics Anything			n in water nt system <u>Place after</u>	Simple operation Design con <u>Advantages</u> Bacteria and	Disadvantages	0
	Activated carbon ²	Chlorine Chloramines Organics	Carbon fines and Bacterial endotoxin (normally removed by submicron filtration following the carbon filter)	Softener (for high organics in incoming water; reduces ability of carbon to remove TOC) RO DI	Softener (keeping chlorine in during softening helps control microorganisms)	Protects RO and distillation from fouling organics. It does not remove hard-water deposits. Protects RO membranes and DI resins of degradation by chlorine	filters and RÖ membranes. If chloramine is used instead of hypochlorite, can react to create amines, which are hard to remove; requires strong cation exchanger	Ultrafiltration	Kills bacteria	Inactivated bacteria becomes endotoxin	Used following a component that has high bacterial counts	Used to disinfect	endotoxin removal	Can mask upstream purification problems Microbial breakthrough Must be followed by an ultrafilter due to endotoxin generation Must monitor ambient		
	Metabisulfite injection	Chlorine Chloramines	Metabisulfite	RO DI	Softener pH adjustment	Neutralizes chlorine Bacteria growth problems less likely		Distribution	Ozone Steam/hot water	Kills bacteria			the water system during routine disinfection steps Used to disinfect the water system during routine	If designed into the water system, a very easy-to-use method of disinfecting the	levels	
100 CM							Chemical	Kills bacteria			disinfection steps Used to disinfect the water system during	distribution loop	Requires rinsing of the distribution system prior to use			

disinfection

Anions, cations, Softener Chlorine

routine disinfection steps

Storage tank


Reliability

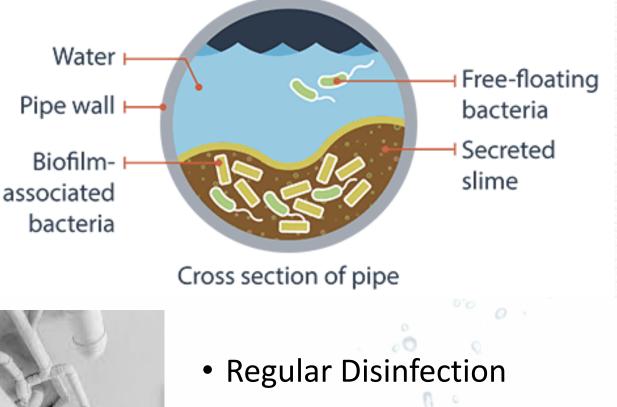
Rate of production Storage tank may be

00

Annex F - Water Treatment System Design

Figure F.1 is an example of a general water treatment process for incoming water to produce water that is acceptable for use in medical device processing.

Annex G - Routine Monitoring of Water Treatment Equipment & Produced Water Quality


- Pretreatment equipment monitoring
- Primary Treatment Equipment Monitoring
- Storage Tanks, Distribution Equipment, and Piping Monitoring
- Bacterial Control Equipment

Distribution Loops Must be in Control

 Microbial Load can be variable if biofilms are present

 Routine Monitoring Program w/ Point of Use Test Locations

Annex H – Maintaining Microbiological Quality

- Microbiological Quality
 - Bioburden by colony forming unit (CFU)
 - Bacterial Endotoxin Test
- How to Perform Water Sampling
- Results Exceeding Specification

Annex I – Typical Presentation of Water Quality Issues During the Processing of Medical Devices

Table I.1—Examples of observed problems during medical device processing that can be caused by poor water quality

Observed problem	Possible causes	Recommendations
Ineffective cleaning or residual soil	 Soil allowed to dry on medical devices before cleaning; Cleaning process not efficient; Quality of water affects cleaning chemistry; Medical devices difficult to clean; Medical devices not fully opened or not disassembled and; Medical device not loaded into a washer correctly. 	 Review the handling of medical devices during clinical use and processing Check the cleaning chemistry can handle certain water qualities (e.g., high water hardness) Conduct water quality testing (particularly hardness) and consult with expert to assist in problem remediation
Surface damages include: — Corrosion; — Pitting; — Rusting; — Stress cracking.	 Quality of medical devices and materials of construction Physical damage during handling of the medical device Allowing soil to dry on medical devices before cleaning Exposure to some chemicals (e.g., saline solutions, chlorine, iodine, chlorinated water (especially when heated) Incompatible water of cleaning chemistries (e.g., pH too high/low) 	 Repair or discard damaged medical devices Review the handling of medical devices during clinical use and processing Monitor water quality Testing (particularly pH, chlorine, and silicates) Consult with expert to assist in problem remediation
Loss of color	 Bleaching of colors over time, especially with colored anodized aluminum Chlorinated water (especially, when heated) Incompatible water, cleaning chemistries (e.g., pH too high/low), 	 Review the handling of medical devices during clinical use and processing Conduct water quality testing (particularly pH, chlorine, and silicates)

Situation 1: Manual Pre-Cleaning

- Utility Water Hardness <150mg/L
- Salts in hard water may deposit on instruments
- Salts may impact detergent effectiveness

Situation 2: Automated Cleaning

- Critical Water (final rinse) – Conductivity < 10µS/cm
- Excessive lons can damage device surfaces
- Ions can discolor devices when exposed to heat

Questions?

0C